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An algorithm is presented for approximating the motion of the interface between two 
immiscible fluids in a Hele-Shaw cell. The interface is represented by a set of volume fractions. 
We use the simple line interface calculation method along with the method of fractional steps 
to transport the interface. The equation of continuity leads to a Poisson equation for the 
pressure. The Poisson equation is discretized. Near the interface where the velocity field is 
discontinuous, the discretization is based on a weak formulation of the continuity equation. 
Interpolation is used on each side of the interface to increase the accuracy of the algorithm. 
The weak formulation as well as the interpolation are based on the computed volume 
fractions. This treatment of the interface is new. The discretized equations are solved by a 
modified conjugate gradient method. Surface tension is included and the curvature is com- 
puted through the use of osculating circles. For perturbations of small amplitude, a good 
agreement is found between the numerical results and linearized perturbation theory. Numeri- 
cal results are presented for the finite amplitude growth of unstable fingers. ‘C 1990 Academic 

Press, Inc. 

1. INTRODUCTION 

In this paper, we present a numerical method for evolving an interface between 
two immiscible fluids in a Hele-Shaw cell (two closely placed parallel plates). These 
fluids are immiscible in the sense that there is a finite surface tension which stabi- 
lizes small-scale disturbances in the interface. The equations describing the flow of 
a fluid in a Hele-Shaw cell are the equation of motion 

and the equation of continuity 

V.u=Q, (2) 
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where ,u is the fluid viscosity, b is the spacing between the plates in the Hele-Shaw 
cell. The plates are taken as horizontal, the positive y-axis is in the direction of the 
flow, the x-axis is parallel to the plates, and the z-axis is perpendicular to the plates. 
The velocity vector u has two components u and u which are functions of t (time), 
x and y. These velocities result from taking an average of the three-dimensional 
velocity field. The pressure p is also an averaged pressure. 

Derivations of the equations are found in Lamb [20] and Bear [2]. An intro- 
duction to the above problem is found in [32] along with a dimensionless form of 
the equations. 

The problem of tracking an interface in a Hele-Shaw cell is of interest for many 
reasons. When one fluid displaces another fluid in a porous medium, the interface 
between the two fluids can be stable or unstable. For an unstable interface, 
small disturbances in an initially horizontal interface grow into long fingers. This 
instability is of interest, for example, in secondary oil recovery where residual oil is 
forced out of the ground by the injection of another fluid, usually water. Some 
numerical models to evolve interfaces between two fluids in a porous medium are 
presented by Concus and Proskurowski [lo], Glimm et al. [15, 163, Lotstedt 
[22], Chorin [4], and Colella et al. [8]. 

Usually these interfaces are three-dimensional and the equations describing them 
are nonlinear, making them difficult to study both experimentally and analytically. 
The Hele-Shaw cell is often used as a device for studying two-dimensional flow in 
porous medium. This is due to the fact that the differential equations for the 
velocity field in a porous medium are the same equations for the velocity field in 
a Hele-Shaw cell, apart from scaling. In addition, the Hele-Shaw cell is also a 
simple system which is easier to vizualize than a porous medium. 

In a Hele-Shaw cell, for horizontal flow, an interface becomes unstable when a 
less viscous fluid displaces a more viscous fluid. Unstable fingering in a Hele-Shaw 
cell has been studied experimentally by many authors (see Saffman and Taylor 
130-J; Chuoke et al. [7]; Gupta et al. [ 181; White et al. [35, 361; Pitts [29]; Park 
et al. [27]). Saffman and Taylor performed a linearized stability analysis for an 
initially flat interface and found an analytic solution for the shape of single fingers 
neglecting surface tension. McLean and Saffman [23] found an analytic shape of 
single lingers including surface tension. Chuoke et al. [7] performed experiments in 
a Hele-Shaw cell and in packed bed models. They also performed a linearized 
stability analysis for an initially flat interface. Paterson [28] recently performed 
experiments investigating radial fingering, i.e., an initially circular interface is 
perturbed and lingering occurs. Paterson argues that the radial model is more 
appropriate to practical situations. 

In this paper we present a numerical method which demonstrates high accuracy 
in evolving interfaces represented by waves of small amplitude thereby suggesting 
that it gives reasonable results for large amplitude waves. To the author’s 
knowledge, numerical methods simulating the evolution of an interface in a Hele- 
Shaw cell have been presented by Meng and Thomson [25], by Tryggvason and 
Aref [32,33], by Degregoria and Schwartz [ 11, 121, and by Meiburg and Homsy 
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[24]. Tryggvason and Aref develop and use a vortex method to evolve this inter- 
face. The results seem to agree well with those of the linearized theory and the 
steady fingers of McLean and Saffman [23]. In their method, the authors represent 
the interface as a vortex sheet and derive an equation for its strength which they 
solve. They evolve this sheet using the vortex-in-cell method as presented by 
Christensen in [6]. Meiburg and Homsy also represent their interface as a vortex 
sheet but they discretize it into circular arcs. Their results compare well with 
analytical results of McLean and Saffman [23] and other solutions given by 
Aitchison and Howison [ 11. Degregoria and Schwartz develop and use a 
boundary-integral technique. Their results also compare well with the steady lingers 
of McLean and Saffman [23] and seem to be excellent for small values of the 
surface tension. The purpose of this paper is not to give a comparison of the 
author’s method with the above methods but to present a new method. This 
method uses some new techniques and gives some interesting results. This approach 
could be used in similar problems. We compared our numerical method extensively 
with the predictions of the linearized theory and the results are surprizingly good. 
This gives us some indication of how well our numerical method might expect to 
handle unstable interfaces, which evolve into lingers. Some of these evolved inter- 
faces are presented here and they compare well qualitatively with those obtained 
experimentally and numerically by other authors. 

The method we use to transport the interface, the simple line interface method 
(SLIC), is presented initially by Noh and Woodward in [26]. Chorin, in [3], 
modifies this method to increase accuracy and applies it to flame propagation. 
Lotstedt, in [22], makes further modifications to increase accuracy in solving 
Burgers’ equation and two phase porous flow. Sethian [31] and Ghoniem et al. 
[ 131 use SLIC to attain highly successful results in combustion. SLIC relies on 
local reconstructions of the interface and is highly effective in handling interfaces 
with such complex geometry as lingers and cusps. We present a method for finding 
the velocity field by discretizing a weak formulation of the continuity equation, 
Eq. (2). Interpolation is used to increase accuracy. A modified conjugate gradient 
method is used to solve the system resulting from the discretization. Curvature is 
computed using a method presented by Chorin in [S]. This curvature is then used 
to include surface tension. 

The remainder of this paper is organized in the following way. In Section 2, we 
give a formulation of the problem that we are solving. In Section 3, we present our 
numerical method. In Section 4, we show how the rate of growth of a wave of small 
amplitude is calculated by our numerical method. The numerical results are then 
compared with the results as predicted by the linearized theory in various tables 
and graphs. In Section 5, we show the evolution of unstable interfaces for long 
periods of time and Section 6 is devoted to a general discussion of the results and 
our conclusions about the method. 
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2. FORMULATION OF THE PROBLEM 

In this section, we give the formulation of the problem which we solve numeri- 
cally. In the derivation of the equations describing the flow of a fluid in a Hele- 
Shaw cell, dp/& = 0. implying that p is a function of x and )’ only. The velocity field 
u = (u, tl) is an averaged velocity field which is also a function of .X and J only. The 
flow is considered as two dimensional in the x-y plane. We consider the flow to 
lie in a rectangular box R with width a and height c (see Fig. 1). All functions 
defined on the box are periodic in the horizontal direction with period a. Black fluid 
flows into the box from behind the interface at a constant velocity (0, V) across the 
line segment between the points (0,O) and (a, 0). White fluid flows out of the box 
in front of the interface at a constant velocity (0, V) across the line segment between 
the points (0, c) and (a, cj. The region in which the black fluid lies is RB and the 
region in which the white fluid lies is R W such that the union of those regions is 
the region R. We are interested in the evolution of the interface between the white 
and the black fluids with viscosities p,,, and pbr respectively. Our numerical method 
is designed to solve the following problems subject to the following conditions. 

1. Typical interface. 
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In RW, find a solution to the equations 

b’ VP,, 
uw= -12/l,, 

v.u,,=o 

such that the velocity, v,.(x, c), is prescribed. 
In RB, find a solution to the equations 

b2 
ub = - 12/l, --VP, 

v.u,=o 

(3) 

(4) 

(5) 

(6) 

such that the velocity, ub(x, 0), is prescribed. 
These two problems are connected by the following conditions: 

(1) The Rankine-Hugoniot condition is satisfied at the interface, i.e., 

u,..n-u,.n=O, (7) 

where n is the normal to the interface pointing towards the black fluid. 
(2) Surface tension is included in this model by specifying a jump in the 

pressure across the interface given by 

ew(xo, ho) - ebb, YO) = -r/R,o,,.,y (8) 

where p6(xo, yO) is the limit of pb(x, y) as (x, y) approaches (x,, yO) with (x, y) 
a point in the black fluid and p,,, similarly defined, r is the surface tension, and 
R .ro,~o is the signed radius of curvature of the interface at the point (x0, yO). 

(3) The compatibility condition 

s o 
cl 

trb(x, 0) d-x = 
I u,, (x, c) dx, 

0 0 
(9) 

is satisfied; i.e., the inflow velocity and the outflow velocity cannot be specified 
arbitrarily. 

After finding the velocity field above, we advect the black and white fluids in such 
a way that the interface is transported. 

3. NUMERICAL METHOD 

In Section 3.1, it is shown how the interface is transported with the simple line 
interface calculation (SLIC) method. In Section 3.2, our method for calculating the 
velocity field is presented. The interface is reconstructed and the reconstruction is 
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used to discretize a weak formulation of the continuity equation. After the dis- 
cretization of the continuity equation, a system of equations results and these equa- 
tions are solved by a modified conjugate gradient method presented in Section 3.3. 
In Section 3.4, it is explained how curvature is calculated and how surface tension 
is included. 

3.1. SLIC 

Consider the two-fluid flow in the rectangular box described in Section 2 and a 
numerical grid of uniform mesh size h imposed over this box. The centers of the 
cells are located at the points (ih, j/z), where i, j are integers and h is a small 
parameter. Assign a number fi,j to each cell equal to the fraction of black fluid in 
that cell. A cell (i, j) has volume fraction f,,., = 1 when it lies entirely behind the 
interface, volume fraction .fi, j = 0 when it lies entirely in front of the interface and 
0 <f;., , < 1 when the interface passes through the cell. 

We.wish to transport the black fluid over a time step k with a given velocity field 
u = (u, v). To accomplish this, the interface between the black and white fluids in 
each cell is reconstructed from the given volume fractions fi,j. Each reconstruction 
is based on an inspection of the volume fractions, f,,.i, in the cell and its neighbors; 
the possible interfaces include horizontal interfaces, vertical interfaces, corners, and 
thin fingers as used by Chorin in [3]. The interface is then transported using the 
method of fractional steps. The black fluid is transported in the .X direction with 
velocity U. the white fluid is then transported in the J’ direction with velocity v and 
the volume fractions are updated. 

3.2. Calculation of the Velocity Field 

The interface is reconstructed locally in each cell by comparing the volume frac- 
tions in the cell with those of its neighbors. The possible interfaces allowed in a cell 
include horizontal lines, vertical lines, and corners. This is done in a manner similar 
to that in SLIC. Below, we give the possible sets of volume fractions for cell (i, j) 
and its neighbors that we considered and the type of interface corresponding to 
each of these. 

1. Horizontal interface. The interface is a horizontal line and is located at 
1’ = (j-0.5)/2 + fi, $1. This case occurs, for example when; 0 < fi,j < 1, fi, ,- , = 1, 
L+ I = 0, with f, ~~ ,. j > 0 and f, + ,, j > 0 (see Fig. 2). The other cases are obtained 
by interchanging the roles of top and bottom and/or the roles of black and white. 

2. Vertical interface. These cases are simply a rotation of the cases above for 
the horizontal interface. 

3. Corner. This interface consists of a horizontal and vertical line meeting 
in the cell. This case occurs, for example when; 0 CL.,, < 1, 0 < f,, i,, < 1, 
O<.L.,-~<1,.f-~,j=O, and&+, = 0 (see Fig. 3). The horizontal dimension a and 
vertical dimension b for this corner are determined by solving the equations 

(10) 
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FIG. 2. Horizontal interface. Circles denote location in cell where pressure is solved for. 

and 

ab= fi,jh2 (11) 

for a and b as in the version of SLIC given by Chorin in [3]. The other cases are 
obtained by interchanging the roles of black and white, of top and bottom, and of 
left and right. 

4. Vertex corner. This interface consists of two lines emanating from 
opposite vertices of cell (i, j) and intersecting at some point on the diagonal 

FIG. 3. Corner interface. Circles denote location in cell where pressure is solved for. 
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FIG. 4. Vertex interface. Circles denote locat n in cell where pressure is solved for. 

through the other two vertices. The point of intersection is determined such that cell 
(i, j) contains volume fraction fi. j. This case occurs, for example, when 0 < j;,, < 1, 
fr+I.j~l~f,,j-~ll~fr-l,j~O~fr.j+I~o( see Fig. 4). The other cases are obtained 
by interchanging the roles of black and white and of left and right. 

Given these reconstructions, we solve for the pressure pi,, at some point zi,j in 
cell (i j) whose location depends on the local reconstruction in that cell. For 
horizontal and vertical interfaces z~,.~ is located on the interface, in the middle (see 
Fig. 2). For the corner, zlj is located at the point where the vertical and horizontal 
lines meet (see Fig. 3). For a vertex corner, zi,i is located at the point on the inter- 
face where the two lines intersect the diagonal (see Fig. 4). For the case when cell 
(i, j) contains no interface zi, j is located at the center of the cell. 

An equation for each cell (i,j) in terms of the grid function’s value, pi,,, in cell 
(i,j) and the grid function’s values in neighboring cells is obtained through the 
discretization of 

5 u . n ds = 0, (12) i’c,., 

where I&-,,~ is the boundary of the cell (i, j), u is the velocity field, and n is the out- 
ward normal. Equation (12) is a weak formulation of (2) and can be rewritten as 

s u.nds+ 
s 

u.nds+ u.nd+ 
RS TS s 

u.nds=O, (13) 
BS 

where RS is the line segment on the right side of cell (i, j), TS is the line segment 
on the top side of cell (i, j), LS is the line segment on the left side of cell (i, j), and 
BS is the line segment on the bottom side of cell (i, j). Each of the four parts in (13) 
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above is approximated by the length of the line times u. n approximated at a 
convenient point on the line of integration. 

When the interface crosses a cell, the line integral along each side is divided addi- 
tionally into a part corresponding to the white fluid and a part corresponding to 
the black fluid, where each part is approximated in the same way. To approximate 
the length of the line for these situations, we need to approximate where the inter- 
face crosses the side. In general, the interface is estimated to cross a side at an 
average of where the local interfaces in the two cells sharing the side cross. For the 
case where one of the cells sharing the side is full of the white (black) fluid, no 
interface crosses the side only white (black) fluid. 

Approximating u . n along the sides of the cell is equivalent to approximating 
dp/iJx along the vertical sides and dp/i?y along the horizontal sides of the cell (see 
Eqs. (3) and (5)). Suppose that dp/dy is to be approximated along the top side of 
cell (i, j). In general, we would like to use a difference quotient as the approxima- 
tion equaling the value of the grid function pi, j+, in cell (i, j + 1) minus the value 
of the grid function P;,~ in cell (i, j) divided by the distance between the locations 
of the grid points in the two cells. However, when an interface passes through either 
cell (i,j) or (i,j+ l), z;,, and z~,~+, might not have the same ?r-coordinate. Linear 
interpolation is used to approximate the value of the grid function in cell (i, j) or 
(i, j+ 1) at a point which has the same ?c-coordinate as the location of the grid 
function in cell (i, j+ 1) or (i, j), respectively. This approximation of the grid func- 
tion is then used in the difference quotient. The choice of the cells used in interpola- 
tion depends on the locations of pi,, and p,,, + ,, and in what fluid dp’play is being 
approximated. i3p’pia.u is approximated in the same manner. The above discretization 
at the interface for Vp allows curvature to be incorporated easily (see Section 3.4). 
A complete description of the exact interpolation used for each situation can be 
found in [34]. The discretization of (13) can be thought of as a weak discrete 
divergence. 

The equations for the cells along the boundary of the rectangular box are 
modified slightly due to the boundary conditions. 

The case that occurs most frequently is the one where (i, j), (i - 1, j), (i + 1, j), 
(i, j- 1 ), and (i, j+ 1) contain no interfaces and contain the same fluid. Without 
loss of generality, we assume the fluid in these cells to be black. The pressures are 
all cell centered and (13) can be approximated as follows: 

hK a~((i+0.5)h,m+hK am, (j+o.w 
b adY b a> 

-hK 
b b 

ap(ik (j-0.5)h)=0 
a,! 

3 (14) 

where Kb= -b2/1&lb. 
Using the centered difference approximation, (14) can be approximated by 
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hK pi+I.j-Pi.,j+hK Pr.j+l-Pi,j 
h h h h 

-I,~ Pi.j-Pi-1.~~~~~ Pi.,-Pt,j-I=o 
h 

h 
h h ’ 

115) 

which simplifies into the standard five-point difference formula for the Laplacian, 

(16) 

The following example illustrates the discretization of each term in Eq. (13) for a 
cell (i j) with a horizontal interface passing through it (see Fig. 5). In this example, 
we assume zero surface tension, i.e., the pressure at the interface is single-valued. 
Section 3.4 explains how surface tension is included. This example uses the follow- 
ing set of volume fractions: O<fiP,,,< 1, O<fj,i< 1, O<.fr+,,,< 1, .h- -,,., -, = 1, 
.fi,j-I=l, f,+l.,-l=l, fi-I..,+,=& fr,j+I=O, .fr+,.j+I=O. It is assumed that 
hfi_ ,. j 6 Fiji., <fi+ ,, j. By the rationale above, cells (i - 1, j), (i, j), and (i + 1, j) each 
contain a horizontal interface while the remaining cells given contain no interface. 
The points z;- ,.i- ,, Zi.j- ,, Zi+ ,,i- ,, z, - ,,,+ ,, zi,j+ ,, and zi+ ,,j+, are located in 
the center of their cells, since their cells contain no interface. The points zj- ,.jr z,,,, 
and z,+ I.j are located at the centers of the horizontal interfaces. We denote the 
location of these points in each cell by a circle. 

Let us first approximate the line integral on the right side of cell (i, j). The inter- 
face crosses the right side of cell (i, j) at the average of the two local interfaces, i.e., 
at ~9 = (j - 0.5)h + O.Sh(.f,., + f, + ,, ,). Since an interface crosses the right side of cell 
(i, j), the line integral along the right side is divided into two parts, one pertaining 
to the white fluid and one pertaining to the black fluid which is given by 

I u.nds= u . n ds + 
I 

u . n ds. (17) 
RS RSfblack) 

On the right-hand side of Eq. (17), u .n simplifies into K,,.(c?p((i+O.5)h, J,)/S.U) 
when ((i+0.5)h, ~1) lies in the white fluid and into Kh(+((i+O.5)h, .r)/&) when 
((i+ 0.5)h, v) lies in the black fluid where Kh = -h’/l&$, and K,, = -b’/12p,.. The 
line integrals on the right side of Eq. (17) are approximated by u. n at some 
convenient point on the line times the length of the line. Using this and Eq. (17), 
we have the approximations, 

s II n ds 2 0.5h(f,.i +h+ ,, j) Kh 
@‘p((i+O.5h t,) 

RS dx 

+ (h-0.5h(Lfi.~,+f,+ 1.j)) ~5, 
8p((i+0.5)h, t2) 

dx ’ (18) 
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where 5, and rz are the y-coordinates of convenient points on the right-hand 
side of cell (i, j) in the black and white fluids, respectively. The term 
dp((i+ 0.5) h, ~,)/SX in Eq. (18) is approximated by the difference quotient 

Pi+ l.j- Pi., 
d(Zi+ 1.~ - zi. j)’ 

(19) 

where pi+ r,, represents an approximation to the grid function at Zi+ r, j, a point in 
the black fluid, chosen on the line between z~+~,~ and zi+,,,-,, with the same 
y-coordinate as zi. j, The location of Zi+ r,, is denoted by the diamond in Fig. 5 in 
cell (i + 1, j). d(x, y) represents the Euclidean distance between the poiints x and J. 
We then interpolate linearly between pi+ r,, and pi+ r.,--, to approximate the grid 
functions value pi+ ,,j at Zj+ ,,j. ji+ ,,, is given by the relation 

Pi+I,j-Pi+I.j Pi+l.j-Pi+l.j-1 
d(zi+l,j3 %i+ ~.j)=4zi+l,~j~ zi+l,i-l)’ 

(20) 

Therefore we approximate the first term on the right-hand side of Eq. (18) by 

where pi+ ,.j is given by (20). 
The approximation of dp((i+OS)h, <*)/ax. in (17) is similar to the approximation 

done above. The term dp((i + 0.5)h, C2)/a, Y in the equation is approximated by the 
difference quotient 

Pi+ 1.1 - fii, j 

d(zi+ 1. j, ?i, j)’ 
(22) 

FIG. 5. Example of horizontal interface to be discretized. Circles denote location in cell where 
pressure is solved for. Diamonds denote where the pressure is to be approximated by interpolation. 
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where j?i,i represents an approximation to the grid function at 4i,j, a point in the 
white fluid, chosen on the line between zi j and zi j+ ,, with the same y-coordinate 
as z !+ 1, j. The location of Z,j is denoted by the diamond in Fig. 5 in cell (i, j). Using 
the same methodology above, @i.j is given by the relation 

bi,j- Pi,j Pi,j+l - Pi.j 

d(fi.j9 Zi.,)=d(Zi.j+Ir zi.j)’ 
(23) 

Therefore we approximate the second term on the right-hand side of Eq. (17) by 

(24) 

where bi,J is given by (23). After summing the two terms in Eqs. (21) and (24), we 
have the approximation, 

~.nds=O.Sh(~i,j+fi+,,j)Kb pi+"i-pi.J 
d(zi+ 1, j3 zt, j) 

+0.5h(2-/,.J-/,,,.J)h-,,d4~1.‘-f’.J, 
r+l,jT zi,j) 

(25) 

where iit ,, j and Di, J are given by (20) and (23), respectively. 
There is no interface crossing the top side of cell (i, j), only white fluid. u . n 

simplifies on the top side to ~,.(iTp((x, (j+0.5)h)/@). The line integral on the top 
side is approximated by 

The line integral on the left side of cell (i, j) is discretized in a similar manner as 
the line integral on the right side. The line integral on the bottom side is done in 
a similar manner to the line integral over the top side. These discretizations are sub- 
stituted in Eq. (13) to give an equation for the grid function value in cell (i j) and 
its neighbors. 

3.3. ModiJied Conjugate Gradient Method 

To solve our system of equations for the unknown pressures obtained in 
Section 3.2, two versions of the conjugate gradient method are used. The first 
algorithm, presented by Concus et al. in [9], applies a preconditioned conjugate 
gradient method to the system 

.4x = b. (27) 

Our second algorithm finds a least squares solution to (27) and is presented by 
Hestenes in [ 191. Our matrix A does not satisfy all the conditions used in the 
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analysis of convergence of our first conjugate gradient algorithm. In particular, it 
is not symmetric because of the interpolation used in Section 3.2 and it is singular 
because of the periodic and Neumann boundary conditions. Therefore, for 
Algorithm 1, the norm of our residual 

lb-b1 (28) 

sometimes does not become small enough, where xk is the k th approximate to x 
after iterating the conjugate gradient method k times. This is resolved by using 
Algorithm 2 to find a least squares solution for which (28) is less than our 
prescribed tolerance. Algorithm 2 requires many more multiplications than Algo- 
rithm 1. Algorithm 1 works so often that it is much cheaper to use Algorithm 1 with 
Algorithm 2 as a backup than using Algorithm 2 alone. Our preconditioner is 
chosen to be the discrete 5-point Laplacian matrix with Neumann boundary condi- 
tions, for which a least squares solution can be easily obtained. This preconditioner 
was obtained from the FTSHPAK library [21]. 

3.4. Surface Tension and Curvature 

Surface tension and curvature are included in our model in the following way. 
Our method is designed so that if an interface passes through a cell then we solve 
for the pressure at some prescribed point on this interface. For each cell containing 
an interface the unknown pressure in that cell is involved in computing the 
velocities in the white fluid and the black fluid. Whenever we are computing the 
velocity of the black fluid, instead of using pi,j as the pressure on the interface for 
the bottom fluid we use pi,, + r/Ri, j, where Ri, j is the estimated radius of curvature 
on the interface in cell (i, j). In computing the velocity in the white fluid, we use 
P;,~. This only modifies the right side of Eq. (27). This does not treat the black and 
white fluids differently (see [34] ). 

The curvature is computed using a method due to Chorin in [S]. This method 
is designed for interfaces represented by volume fractions. Consider a cell (i, j) with 
a volume fraction 0 < fi. j < 1 and suppose we desire to estimate its curvature. The 
method uses the volume fractions of cell (i, j) and some of its neighbors. The main 
idea is to find a circle whose intersection with these cells cuts out the same volume 
fractions as those of cell (i, j) and its neighbors. This circle is identified with the 
osculating circle and its radius is taken to be the radius of curvature of the interface 
in cell (i, j). 

4. NUMERICAL RESULTS FOR THE LINEARIZED THEORY 

In this section, numerical results are compared with the predictions of the 
linearized theory. In Section 4.1, we give the rate of growth for a small wave as 
predicted by the linearized theory along with a method for approximating the rate 
of growth for a small wave associated with the numerical method. In Section 4.2, 
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the numerical results are presented and compared with the results predicted by the 
linearized theory. 

4.1. Numerical Rate of Growth 

In [7, 301, it is shown that when the Hele-Shaw equations are satisfied on both 
sides of an interface, given by the equation 

I’ = Ee Cl-v, (29) 

then the interface, after a short time At, evolves into an interface given by the 
equation 

)’ = EeDd’ einr, (30) 

The analysis assumes that se Odr is small enough. The rate of growth 0 is given by 

a = (IL-~,) k’n - Tkn’ 
A+Ph . 

(31) 

n is the wave number, E is a small parameter. T is the surface tension coefftcient, 
(0, V) is the velocity far ahead and far behind the interface, and k = b*/12. 

Our interface is evolved in a rectangular box in the x - y plane as described in 
Section 2. The vertices of this rectangle are (0, 0), (1, 0), (0, c), and (1, c). The 
equation for the interface lying in the middle of the rectangle is 

)’ = E cos( 2n.x) + c/2. (32) 

We choose n to be of the form n,z for some integer n,. A numerical grid is super- 
posed over the rectangle with cells of dimension h x h. There are m cells across 
horizontally and I cells vertically such that m ./I = 1 and f/m = c, where m and I are 
integers. 1 is assumed to be even for convenience. The interface lies in the center of 
the grid in the j, row of cells, where j, = l/2 + 1. This is accomplished by choosing 
E small enough. To transform the interface represented by a curve into one 
represented by volume fractions, the following is done. A cell (i, j) has volume frac- 
tion & = I when it lies behind the interface (i.e., when j< j,), volume fraction 
fi,.i = 0 when it lies in front of the interface (i.e., when j>j,), and volume fraction 
0 <hfi./ < 1 when the interface passes through the cell (i.e., when j= j,). For cells 
(i, jO), where i = 1, . . . . m, the amount of black fluid in the area lying in each cell is 

aj.jo = 

The fraction of black fluid in each cell, &,, i= 1, . . . . m is given by 

(33) 

fi, = a,Jh*. (34) 
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Each cell in the j, row is then assumed to contain a horizontal interface with 
height LJz. The interface is viewed globally as a piecewise constant function given 
by 

f(x)=f,,h+(j,-0S)h for (i- l)h<x<ih. (35) 

Our numerical method is applied to the interface represented by the volume frac- 
tions above. This gives a new interface represented by a new set of volume fractions. 
The new set of volume fractions correspond similarly to a piecewise constant func- 
tion. We approximate the rate of growth of the cosine wave with wavenumber n by 
the rate of growth of the corresponding Fourier component of f(x) with wave- 
number n. 

4.2. Numerical Results 

The interface on our numerical grid is represented by the wave given by Eq. (32). 
The vertical dimension of the rectangle, c, is 1 and the velocity prescribed at the 
two horizontal sides is the constant 1. A wave, of amplitude 0.005, is evolved for 
a short time At = 0.00001 on our grid. Results are shown for wavenumbers n = 7c, 
2lr, . ..) 97c and grid sizes of 20 x 20, 40 x 40, 60 x 60, and 80 x 80. Table I presents a 
comparison of the numerical (T with that predicted by the linearized theory for a 
surface tension coefficient of 10. The viscosity in the white fluid is 4 and the 
viscosity in the black fluid is 1. Results are given in Table II for a surface tension 
coefficient of 3. The results are similar when the values of the two viscosities are 
interchanged. 

In general, our method relies on representing the interface as a piecewise constant 
function. The more oscillatory the interface, the harder it is to represent it on a 

TABLE I 

Growth Rates of Interfaces of the Form E cos(2nn.x) 

Note. pc. = 4, ph = I, surface tension = 10, s = 0.005, dl = O.oooOl. 
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TABLE 11 

Growth Rates of Interfaces of the Form E cos(?nn.~) 

[ 9 1 -1.316 -33.913 -37.330 -37.415 ] -39.306 ) 

191 

NOM. /lW = 4, pb = 1. surface tension = 3, E =0.005. dr = 0.00001. 

fixed grid. The numerical predictions of the linearized theory in Tables I and II are 
therefore not as good for higher wavenumbers. 

In Fig. 6, we show a plot of cr versus ,uH,/pb, where p(b = 1 and pW, 2 1. The surface 
tension coefficient is 3 and the computations are done on a 40 x 40 grid. In Fig. 7, 
we show a plot of 0 versus surface tension, where p,, = 1.3 and pb = 1.0. In Fig. 6 

0 60 

30 00 61l 00 90 00 120 00 151 

VT over VB 

FIG. 6. The rate ot growth of a cosine wave versus the viscosity ratio. The predictions of the 
linearized theory are compared with the numerical results when p,, is greater than pb and the surface 
tension is 3. The initial perturbation is a cosine wave with wavenumber 22. The time step is 0.0001, the 
wave has an amplitude of 0.0001 and the interface is evolved on a 40 x 40 grid. 

581 90 L-13 
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NumeTlc.L= . . . 

-6 00 4 
1 00 20 60 40 60 60 40 60 20 100 00 

Surface Tension 

FIG. 7. The rate of growth of a consine wave versus surface tension. The predictions of the linearized 
theory are compared with the numerical results when pW = 1.3 and pb = 1. The initial perturbation is a 
cosine wave with wavenumber 27~ The time step is 0.0001, the wave has an amplitude of 0.005 and the 
interface is evolved on a 40 x 40 grid. 

and 7, the time step At is 0.0001, computations are done on a 40 x 40 grid, and the 
wavenumber, n, is IC. 

For Tables I and II, the interface remains inside one row of cells over one time 
step. We now consider the numerical rate of growth at each time step for an 
evolving interface. This interface eventually is contained in 10 rows of cells. We start 
with an interface given by a cosine wave with amplitude 0.01 and wavenumber rt 
in the middle row of cells. This interface is allowed to evolve according to our 
numerical method with a constant time step 0.00333. At each time step, the numeri- 
cal rate of growth is calculated and shown along with the rate of growth predicted 
by the linearized theory. In addition, we have the coefficient (amplitude) of the 
cosine term of the Fourier series of wavenumber rr along with the number of rows 
of cells containing the interface. The results are for a surface tension coefficient of 
5 on a 40 x 40 grid with pl, = 4 and pb = 1. Results are shown for every 10 time 
steps up to the first 190 and for every time step for iterations 190 through 200. 
These results are presented in Table III. As the amplitude increases, the results 
show a steady decrease in the numerical rate of growth from the result predicted by 
the linearized theory until about iteration 190 when the value begins to oscillate 
rapidly. We attribute this to the violation of an assumption of the linearized theory, 
i.e., that the wave has small amplitude, However, further experiments are required 
to validate this. 

The same experiment is run with a 2n wave and all other parameters the same 
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TABLE III 

Growth Rates of an Evolving Interface Initially of the Form 0.01 cos(27rx) 

Note. p, = 4, pb = 1, time step = 0.00333, r = 5 on a 40 x 40 grid. 

as above. The results are shown for every 5 time steps up to 70 and for every time 
step for iterations 70-77. As the amplitude increases, a similar decrease in the 
numerical rate of growth is observed followed by a similar oscilatory behavior. 
These results are shown in Table IV. 

In solving our system of equations given by (27), we require that 

lb-Axl, <O.OOOl, (36) 

where IIot denotes the maximum norm and x is the vector of grid function values 
for the pressure. Only the first version of the modified conjugate gradient algorithm 
is ever needed. About 23 iterations are required to satisfy (36) when p(, = 4 and 
,,‘b = 1. The number of iterations increase as the viscosity ratio increases. 

The curvature algorithm attempts to find the radius r of the osculating circle. The 
algorithm only considers circles with radii less than some prescribed radius r,, > 0. 
For cells with radius of curvature, in absolute value, greater than r,,, the value of 
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TABLE IV 

Growth Rates of an Evolving Interface Initially of the Form 0.01 .cos(kx) 

Note. p” = 4, pb = 1, time step = 0.00333, T = 5 on a 40 x 40 grid. 

zero is given for the curvature. Our r0 is chosen to be 1000. Our numerical method 
cannot expect to do well for waves with curvature less than &. By choosing a 
larger amplitude, the region where the curvature is less than & becomes smaller. 
This is why our amplitude can not be choosen much smaller than 0.005. 

5. NUMERICAL RESULTS FOR FINITE AMPLITUDE PERTURBATIONS 

In this section, we apply the numerical method to interfaces of finite amplitude. 
Our interface is evolved in a rectangular box in the x - y plane, as described in 

Section 2. The four corners of the rectangular box lie at (0, 0), (1, 0), (0, 2), and 
(1, 2). The velocity prescribed on the horizontal sides is again 1. There are m cells 
across horizontally and I cells vertically such that m . h = 1 and l/m = 2, where m and 
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I are integers. Our interface is initially a sin wave of small amplitude. This interface 
is converted to its corresponding volume fraction representation. The numerical 
method is applied to the interface and an updated set of volume fractions is 
obtained as done in Section 4. The interface is evolved by successively applying the 
numerical method to the updated set of volume fractions. Results are presented 
below for several values of the surface tension coefficient. 

All computations are done on a 30 x 60 grid with .D,,. = 4 and ,uh = 1. The interface 
given by the volume fractions above is evolved in Fig. 8 for the case of a surface 
tension coefficient of 3. The interface is evolved over a period of time t = 1.69 s (210 
time steps). In Fig. 9, we evolve the interface with a surface tension of 7. It is 
evolved over a period of time t = 1.97 s (230 time steps). In Fig. 10, we evolve the 
interface with a surface tension of 14. It is evolved over a period of time t = 1.91 s 
(370 time steps). Figures 8, 9, and 10 are obtained by shading in each cell (i, j), 
where f,, i > 0. To reduce the effects of the horizontal boundaries, after each time 
step the interface is translated back to the middle of the grid. 

T,me=O 47 T~me=l 04 

Time=l 48 T,me=l 69 

FIG. 8. A sin wave is evolved and the interface is shown at times 0.47, 1.04, 1.48, and 1.69 s. 
A surface tension of 3 is used, p(. =4, pb= 1, and a 30 x60grid is used. 
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T,me-0 52 T,me=O 98 

T,me=l 18 Tlme=l 97 

FIG. 9. A sin wave evolved and the interface is shown at times 0.52, 0.98, 1.48, and 1.97 s. A surface 
tension of 7 is used, p., = 4, pb = I, and a 30 x 60 grid is used. 

Our numerical method for advecting the flow satisfies a Courant-Friedrichs- 
Lewy condition that 

where IUI is the maximum speed of the flow and At is the time step. We choose 

as our time step. 
In the first conjugate gradient method, our residual sometimes does not become 

small enough. After 100 iterations of the first algorithm, we use the second algo- 
rithm. We required the residual to be smaller than 0.0001. 
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i Ttme-0 50 Tlme=l 00 

FIG. 10. A rin wave evolved and the interface is shown at times 0.50, 1.00. 1.43, and 1.91 s. A surface 
tension of 14 is used. pW = 4, p,, = 1, and a 30 x 60 grid is used. 

In discretizing the weak formulation of the continuity equation to find the 
velocity field, a local reconstruction of the interface in each cell is required. We 
examine the volume fractions in the cell and its neighbors and determining the 
interface for that situation. We do not include every configuration of volume frac- 
tions in Section 3.1. Occasionally a configuration of volume fractions appears which 
is not covered in Section 3.1. This happens either because the interface is too com- 
plex to be represented by the simple structures in Section 3.1 or because of numeri- 
cal instabilities. It happens no more than once in every 30 time steps. It is probably 
possible to design a version of our algorithm to handle all possible cases but we 
choose not to do so here. It would require using more complicated structures than 
just horizontal lines, vertical lines, and corners. Our numerical experiments seem to 
indicate that as the surface tension becomes smaller, the interface becomes less 
smooth and the chances of encountering a situation not covered increases. When a 
configuration results that is not covered by Section 3.1, the following is done. We 
look for cells (i j) the are partially full with none of its neighbors full, i.e., the eight 
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cells sharing a side or a corner with cell (i, j). We assign the amount of black fluid 
in cell (i, j) to the neighboring cell whose volume fraction is the largest. When the 
amount added to the neighboring cell makes its volume fraction greater than one, 
then the volume fraction of the neighbor is forced to be one and cell (i, j) gets the 
residual. This is one of many possible remedies. 

This version of our code assumes symmetry about the center of the cell. The 
results are qualitatively similar to the results of McLean and Saffman [23]. They 
will be compared quantitatively later. Our results are also similar to experimental 
results observed in the laboratory (see Saffman and Taylor [30]; Chuoke ef al. 
[7]) and to other numerical results (see Meng and Thomson [25]; Tryggvason 
and Aref [32,33]; Degregoria and Schwartz [ll, 121; Meiburg and Homsy [24]). 
The fingers which we observe are rounded at the ends with thin necks. Surface 
tension tends to fatten the lingers. At low surface tensions, the interface is also less 
smooth. 

We will also study grid effects of our numerical method later. The growth of 
lingers and grid effects for a slightly different equation are studied in [ 17, 141. 

6. CONCLUSIONS 

A numerical method is presented for evolving an interface between two 
immiscible fluids in a Hele-Shaw cell. Our numerical method is applied to waves 
of small amplitude for a wide range of viscosities and surface tensions. Good agree- 
ment is found between our numerical rates of growth and the rates of growth as 
predicted by the linearized theory. The linearized theory acts as a test problem for 
the numerical method. By solving this problem with some accuracy, one might 
expect acceptable results for finite amplitude waves. Our results for finite amplitude 
perturbations are qualitatively similar to results of experiments and other numerical 
results. 

We did not give rationale for our choice of where to solve for the grid function 
in each cell in Section 3.2. We made our choices attempting to get the most accurate 
difference approximations and to minimize interpolation. 

For our numerical method, the horizontal interface and vertex corners are used 
mostly in describing small amplitude waves. The numerical results of the linearized 
theory seem to justify the choices for those interfaces. One might expect the same 
for the vertical interfaces. It seems that the corner can only be tested for a nonlinear 
solution. In the future, we plan to compare our results to the McLean and Saffman 
steady lingers which should provide a good test for the corners. 
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